Bridget Holohan – MVP technician

By Ewaldo Leitao

Easy and hard to find – her door is always open but without a name tag – ready to help, and to give advice (for 5 cents), Bridget Holohan has been in the marine sciences community for over two decades. Bridget is currently working for two labs helping in many projects. Bridget is always ready with a sharp, witty joke, which is always appreciated and welcomed. Bridget kindly agreed to be interviewed and to tell us more about her path and career.

Bridget Holohan at the Avery Point campus

Ewaldo: What was your academic journey before you got here?

Bridget: I grew up in Michigan, and I wanted to be an oceanographer. The only school close to where I grew up that had an oceanography program was the University of Michigan, and I wasn't quite ready to go across the country at 18. When I was finishing up there –this was before the internet so finding a job to apply for was harder than it is now–I didn't quite know what I was going to do for a job and decided to go to graduate school. Okay, maybe it wasn’t the best decision to go based on that. I went to the University of Rhode Island and got my master's degree. I thought about whether I wanted my PhD, but I decided that I like to be the one getting my hands dirty, not the one writing a proposal or writing the paper. I wanted to be the one doing it. So, I decided if I got a PhD, more than likely, that wouldn't be what I was doing. I stopped at a master’s degree, which was a good decision for me. As I was finishing up there, I saw a job in the state of Connecticut at the Williams Mystic program. They were looking for a TA.

Ewaldo: And how did you decide to be an oceanographer?

Bridget: I decided to become an oceanographer when I was the age of 12. My family went on a cruise down in the Caribbean and one of the things we did was snorkel. The first time I went snorkeling, I was blown away. I had no idea that there were all these amazing things under the surface of the water. No idea. I grew up in the Midwest. I knew about fish, we have the Great Lakes, but the organisms under the water in the Great Lakes do not look like in the tropics. It was just so incredibly fascinating. I wanted to study the ocean but at that point it was just a fantasy doing research on the ocean. I was planning to become a pharmacist because that seemed more sensible. However, when I started thinking about applying to colleges, I asked myself: why would I be a pharmacist? What I really want to do is oceanography.

Ewaldo: Williams-Mystic program. What is it?

Bridget: It's an off-campus study program of Williams College, which is conducted at Mystic Seaport. And it's entirely based around the ocean. Students come in for one semester. It's like a semester abroad, only it is a domestic program which is focused on the ocean. And they take either marine biology or oceanography. They also take maritime history, marine literature, and marine policy. They read Moby Dick, as you might imagine. They totally get immersed in the program.

Bridget and Evan Ward placing a chamber over coral to collect TEP in Bermuda

Ewaldo: That’s super interesting. What was your master’s degree in?

Bridget: My master's research was on the ecology of Ceriantheopsis americanus, which is a burrowing mud anemone.

Ewaldo: And why didn't you follow up on that particular topic?

Bridget: There's not a lot of jobs for that particular topic. So, I found a job that was mainly education. But it was a horrible salary. Like a third of what you students make. So, in the summer, I went to an oceanography summer camp and worked there. Then after a couple of years, I was like: “Okay, I cannot make a living at this”. I was searching around not being so successful. In the meantime, I did another environmental education job down in Virginia, which was fun.

Ewaldo: All the way down! So when did you come back up to the Northeast?

Bridget: As I was finishing that up, my former boss said: “I got a Pew Foundation Grant, and I put in money for a research assistant. Do you want to come work with me?” I said yes and I went to work with him, but it was only a two-year grant. As that was coming to an end, I saw a job by a man named Evan Ward. I didn't really know anything about culturing phytoplankton, which was what he wanted. But I figured I could learn. Why not? Right. So yeah, that's how I got here. And that was in 1999.

Ewaldo: It's been 24 years! And what was your position then – and currently?

Bridget: I was a research assistant when I started. Now, I'm a research assistant three, but in a lot of ways, my job is very similar. The only thing that has really changed is that as funding got tight, I started to work for Rob Mason as well. I also worked with Claudia for some time, because her job was expanding. I like the fact that there's a lot of variety. I hate being bored.

Ewaldo: You have done a lot of different things and learned a lot of things in this dynamic way. What were your biggest challenges and also biggest joys here?

Bridget: You know, I really enjoy working with bivalves, I like running experiments. Even though sometimes they can be a little crazy. I like seeing the whole process, from what we are proposing to do, to making it happen, and analyzing the data. And then luckily, I don't have to write it.

Ewaldo: Would you have advice for grad students?

Bridget: Boy, that's a really good question. One of the things in this is just kind of funny, because writing is not my favorite thing to do. But people often get hung up on the writing portion, thinking to themselves: “Okay, I need to write the perfect sentence”. Sometimes you just need to write. The beauty of the computer is that you can delete it, you can move it, you can copy and paste it into a different document. So you just have to get your ideas down on “paper”, and then refine them later. Just write it down, get it on the computer, and then fix it.
Also, I recognize that there can be a weird power dynamic between students and professors. But with most professors, you can really just say, “I need help with this….” Rather than wasting a bunch of time, being afraid to ask. Professors will be more receptive than if you wait five months and say you haven't been able to get this to work for five months. That is especially true when students are first starting out, and I see that is an easy role for me to fill. Because students are more comfortable coming to me and saying: “Hey, I don't know what's going on here”. Usually I can point them in a direction or even facilitate the conversation. And of course, there have certainly been times that my advice has been about things having nothing to do with oceanography.

Ewaldo: This is all great advice. Thank you. Maybe the final question, what's the story behind the five cents for advice in your door?

Bridget: I came back to my office one day, and we had a new nameplate and my title was wrong. Nobody told us they were going to change nameplates. I was not happy, so I took it off. I, of course, calmed down. I was going to put the correct title and make it more legible by making our names bigger (I shared an office at the time). It wasn’t a priority for me, so I took my time replacing it. One day I came back to my office and the Lucy character from the Peanuts comic was there. In the Peanuts comics, she had a little booth where she gave advice for five cents. One of my colleagues put it in there because sometimes people come to me for things other than science related advice. I found out later that it was Jeff Godfrey. I thought it was super funny, so I just left it. And one day I came back and there was a little bag of nickels.

Ewaldo: Who did that?

Bridget: It was Lydia Norton

Ewaldo: I guess that sounds about right! Hehe. Thank you so much, Bridget!

CT-NERR is fully staffed and operational!

By Ewaldo Leitao

Thanks to the tremendous efforts of our esteemed researchers, the University of Connecticut now hosts the Connecticut National Estuary Research Reserve (NERR). The NERR System is a network of 30 coastal areas designed to protect and study estuarine ecosystems. The NERR System is a program of NOAA (National Oceanic and Atmospheric Administration), and recently Connecticut was added to this group. These reserves serve many purposes, and Long Island Sound is a large economic contributor and recreational area. Considering the importance of coastal and estuarine ecosystems, the Connecticut Reserve is an important program that fosters management guided through information collected by scientists. Some of the sites selected include Bluff Point and Haley Farm State Park. You can read more about it here.

While the initiative and leadership was spearheaded by Prof. Jamie Vaudrey within the Marine Sciences Department, the office now counts with many new names and faces. You will find them located in offices on the second floor. But we want to make sure to give them all a proper welcome! You can find their full bios and contact information here.

Jamie Vaudrey - Research Coordinator - CT NERR

Jamie is a marine ecosystems ecologist and modeler, interested in the impacts of humans on coastal waters. She received a B.A. in Biology with a minor in Philosophy from Wellesley College, MA; moved on to study environmental education in the Florida Keys, then in Oregon; then on to graduate school at the University of Connecticut. Jamie was the UConn lead, shepherding the establishment of a NOAA National Estuarine Research Reserve in Connecticut and is currently the Research Coordinator for the Reserve. Jamie is also involved with EPA’s National Estuary Program, serving on the science advisory committees of the Long Island Sound Study and the Narragansett Bay Estuary Program. You can learn more about her research interests by visiting her website: https://vaudrey.lab.uconn.edu/. Her favorite reserve is the Mumford Cove! “I first ‘met’ Mumford Cove as a graduate student, 24 years ago – the study location of my dissertation. In 1999, eelgrass was just starting to recolonize the Cove and I had the opportunity to document the progress of its return, working with a team of fellow grad students and undergrads who are still some of my best friends today. Amazing how much a small Cove has to teach, and how many opportunities it provides!”

Larissa Graham - Education Coordinator - CT NERR

Larissa has worked in the environmental field for nearly 15 years, sharing science-based information with a variety of coastal audiences. She worked for the New York Sea Grant as the Long Island Sound Study Outreach Coordinator, and for the Mississippi-Alabama Sea Grant, the Grand Bay National Estuarine Research Reserve, and, most recently, the Student Conservation Association as the Alabama and Mississippi State Director. Larissa is looking forward to settling back into her New England roots. She spent a lot of time boating and fishing with her family as a child, which fostered her love for the Sound.

Ashley Hamilton - Research Assistant - System Wide Monitoring Program (SWMP)

Ashley graduated from the UConn Avery Point community with a B.S. in marine sciences, and completed a master’s degree from the University of Rhode Island, where her research focused on the impacts of anthropogenic stressors to commercially important bivalve species. Since 2016 she has worn various hats in the shellfish and seaweed aquaculture industry, including farm hand, hatchery production and researcher. Ashley is excited to guide the next generation of undergraduate researchers. Ashley shared that her “NERRdiest” thing is to get tattoos of the organisms she works or studies, which includes a (scientifically accurate!) anatomical eastern oyster. She shares: “Next on my wish list is a blue mussel shell in celebration of finishing my thesis, and I can see some marsh plants and critters in my future as I venture into the CT NERR monitoring program!”

Jason Krumholz - Stewardship Coordinator - CT NERR

Jason is an Associate Professor at UConn and the Stewardship Coordinator for the Reserve. In this role, he helps to facilitate resource inventory, conservation, and restoration goals in concert with federal, state, and local partner organizations as well as contributes to scientific research, outreach, and education efforts at the Reserve. He served with NOAA’s Northeast Fisheries Science Center as the Liaison Ecologist to the Long Island Sound Study, where he worked with a wide range of partner organizations at the interface of science and policy on several efforts to improve the transmission of scientific data into management. He is the Chief Scientist for two small non-profits; The Reef Ball Foundation, which uses designed artificial reef technology to facilitate coastal restoration, and Slow No Wake, which works on marine debris removal and education in the recreational fishing sector. He is also a founding board member of Remote Ecologist, a non-profit organization designed to remove the barriers to participation faced by independent and unaffiliated research scientists. Jason recounted that once he got roped into diving off of Pine Island to collect green crabs in the middle of the winter for a colleague. "It was so cold that ice was literally forming on our gear. It was one of those moments that was pretty miserable at the time, but the memory of it is somehow very positive… one of those moments where you realize that if you like what you do enough to do THIS, then you’re probably going to really enjoy doing it for the rest of your career.”

Katie Lund - Coastal Training Program Coordinator - CT NERR

Katie joins the Reserve from her previous position at UConn’s Connecticut Institute for Resilience and Climate Adaptation where she led engagement activities and managed municipal and research grant projects to increase resilience of Connecticut’s communities to the growing impacts of climate change. Katie has worked for over 20 years on a variety of coastal management topics – including the Northeast Regional Ocean Council and Long Island Sound’s marine spatial plan and the Massachusetts Office of Coastal Zone Management’s special area management. Katie holds an M.S. in Marine Resource Management from Oregon State University. “One of my favorite memories of the Reserve is the first walk I did on Bluff Point with my kids when they were very young”, shared Katie. “After we’d gone a couple miles and they were ready to turn around, I saw a small side trail to the right and convinced them to try it. We popped out onto a beautiful beach…such a surprise – I had no idea there was such a BIG and quiet and beautiful beach as part of Bluff Point. Over ten years later, I now work for the NERR and this beach is part of our new reserve!”

George McManus - Interim Manager and UConn Center Director - CT NERR

George is a biological oceanographer. He received his PhD from Stony Brook University and worked at the Cary Institute of Ecosystem Studies, the University of Maryland, and the Dauphin Island Sea Lab before coming to UConn, where he has taught for 28 years. His research is focused on microbial plankton, including bacteria, phytoplankton, and ciliated protozoa, documenting their diversity and distributions in the coastal ocean. He is currently serving as the Interim Reserve Manager and Center Director. One of his fond memories of the Sound is when he was fishing with his son and a seal popped up next to the boat with a fish in his mouth. “We just stood there watching and marveling at this bit of the food chain taking place before our eyes”, said George.

Sam Stadnick - Fiscal Officer - CT NERR

Sam joins the Reserve as its Fiscal Officer after working in the Connecticut House of Representatives where he assisted elected officials with their constituent service and legislative responsibilities. He is thrilled to use his experience in public affairs to protect the natural areas of Eastern Long Island Sound and the Lower Connecticut River Valley where he has been a longtime hiker and boater. Sam is also very proud to return to UConn, where he graduated with a B.A. in Political Science. Sam mentioned that: “When fishing near Millstone Point with my father, we would often catch Tautog, or blackfish – one of the most beautiful (and delicious) fin fish in Long Island Sound. The rocky outcroppings that lie off of Millstone Point provide great habitat for the fish and great recreational fishing opportunities.”

Jamie Vaudrey

Larissa Graham

Ashley Hamilton

Jason Krumholz

Katie Lund

George McManus

Sam Stadnick

Marine Science Day
Prof. Jamie Vaudrey and PhD Student Matthew Leason working with students at Marine-Science Day

Finally in person again: Feng Graduate Research Colloquium 2023!

On 18 May 2023, Department of Marine Sciences graduate students and faculty came together for the 14th Biennial Feng Graduate Research Colloquium

18 May 2023. After a COVID-forced hiatus of more than two years, our department finally held a successful Feng graduate student research colloquium in person again. The Feng Graduate Research Colloquium has been a tradition in the Marine Sciences Department since 1996. Named after the first Head of the Department of Marine Sciences, Dr. Sung Y. Feng, the colloquium was started by Prof. Hans Dam. The colloquium acts as a conference in which students receive friendly, constructive criticism, and have the opportunity to work on developing their abstract writing, leadership, and scientific communication skills. The Colloquium is funded by the Department of Marine Sciences and the S.Y. Feng Scholarship Fund.

This years colloquium featured 16 oral presentations and 20 posters spanning the entire diversity of marine research in our department. Special thanks to the student organizers and Debra Schuler for the help behind the scenes.

See the colloquium list of talks and poster presentations, including abstracts


Our [student] Life on the Ocean


By Ewaldo Leitao.
When we say we work or study oceanography, it is common for us to be met with a: “Wow, you must spend a lot of time doing cool stuff in the ocean then!” Alas, most of us spend most of our time on a computer. However, cruises are still an essential part of oceanographic research to collect the necessary data or test equipment. In our department, many students have this opportunity to participate in such cruises; all with fascinating and unique research interests. Over the past year, several students joined cruises to get familiar with field techniques, collect their own data, or to better understand their study area. In this piece, graduate students in our Marine Sciences department shared their experiences in cruises that took place from Summer 2022 up to May 2023.

Graham Trolley, graduate student at the Dierssen OPTICS lab went on a cruise to measure microplastics optics in the great pacific garbage patch!

Graham Trolley preparing to deploy a neuston net to collect plastics for his spectrometry measurements.

An example of plastics collected during one of the net tow.

“In the Summer 2022 I participated in the Sea Education Association (SEA) summer cruise through the great pacific garbage patch, which sailed from Honolulu, HI to San Diego CA, starting In late June and ending in late July. SEA typically runs programs with undergraduates, who take part in cruises to learn about oceanography, sailing, and earn course credit. As a grad student, I was able to tag along as a visiting scientist and focus on collecting data.

My research focused on taking optical measurements, such as spectral reflectance, of freshly-collected plastic pieces. Previous work has been published on plastic spectral reflectance properties, but these measurements were made on dried and stored samples. Out in the environment, plastic pieces are likely to have some degree of biofilming growing on them. So, I sought to collect spectral reflectance measurements of freshly collected plastics in order to assess how the presence of biofilms might impact plastic spectral reflectance. Knowing this will be useful for sensitivity analyses seeking to develop a satellite-based ocean plastic detection algorithm.

During the cruise, I conducted daily neuston net tows to collect plastic pieces. Neuston nets are towed along the surface of the water to collect as many buoyant plastic pieces as possible. Once collected, I rinsed the plastics out of the net and into a bucket, then picked them out and aggregated them for spectral measurement.”

Mackenzie Blanusa (left) getting ready to deploy a mixed layer float on the SMODE IOP1 cruise.

Mackenzie Blanusa, physical oceanography graduate student, does a lot of math and computer work, but she had the opportunity to take part in two different cruises in the last academic year! She got some hands-on experience in the first one, and in the second she is participating in the cruise that collects data for her study area in the Brazil Margin.

“I participated in NASA’s Sub-Mesoscale Ocean Dynamics Experiment (S-MODE) IOP1 as part of the science party aboard the R/V Bold Horizon. The cruise took place from 10/06/2022 – 11/04/2022 in the Pacific Ocean, approximately 100 miles offshore of San Francisco, California. The focus of this experiment was to sample ocean fronts that are a few kilometers in size to study their dynamics and effects on vertical transport. The ocean fronts were sampled using aircraft, ship surveying, and autonomous platforms such as wave gliders, sea gliders, saildrones, floats, and drifters. I worked the night shift from 4pm – 4am, running an instrument called an EcoCTD, which measures temperature, salinity, pressure, chlorophyll, backscatter, and oxygen. I also helped with the recovery and deployment of wave gliders and mixed layer floats.

I am currently (03/06/2023 – 04/06/2023) aboard NOAA’s R/V Ronald H. Brown for U.S. GO-SHIP’s decadal reoccupation of A16N in the Atlantic Ocean. I am participating in the first leg of the cruise, sailing from Brazil to Spain. The second leg of the cruise will be sailing from Spain to Iceland. This is a longline hydrographic cruise, where we take CTD casts at many stations along the same longitude line. The CTD rosette has 24 bottles and is deployed to the bottom of the ocean. I am working with Dr. Chris Langdon’s research lab out of the University of Miami. The Langdon lab is leading measurements on oxygen, pH, and total alkalinity. I am overseeing pH measurements using a spectrophotometer. Other groups are taking measurements which include DIC, DOC, CFCs, velocity, temperature, salinity, and biological samples. The best part of my trip so far has been getting to explore Brazil, crossing the equator, and viewing beautiful sunrises every morning.”

Yipeng He, alumnus of the Mason Mercury Lab, studied air-sea mercury exchange in the ocean for his PhD, also had cool research experiences in cruises.

“I was on a scientific cruise - the GEOTRACES GP17 cruise, leaving San Diego (CA) on Nov 13 2022. Going from North Pacific to South Pacific, crossing the Equator, going further south and crossing the Antarctic cycle, and arriving at Punta Arena (Chile) on Jan 25 (2023). The boat was R/V Roger Revelle, which was my second time sailing on this boat. The first time was the GEOTRACES GP15 cruise in 2018. I was collecting samples and measuring atmospheric mercury species, air-sea exchange of mercury species and surface ocean Beryllium-7 profile.”

Yipeng He with his atmospheric Hg speciation system on R/V Roger Revelle during the GEOTRACES GP17 cruise.

Kayla Mladinich Poole receives R. LeRoy Creswell Award for Outreach and Education

Kayla Mladinich Poole, a Ph.D. candidate in the Department of Marine Sciences, was awarded the R. LeRoy Creswell Award for Outreach and Education through the National Shellfisheries Association (NSA). Kayla was selected for her extensive communications and outreach experience with the public and in STEM, as well as for her work as an active volunteer at the annual NSA conferences. Kayla is the first recipient of the award created to honor R. LeRoy Creswell’s life and impressive work in outreach and extension services. Congratulations, Kayla!


Kayla and Prof. Evan Ward collecting samples in the field
Kayla analyzing samples in the lab

“Harmony of Nature”: environmental data becomes music

By Ewaldo Leitao.

Science communication has many flavors, kinds, and sounds. One way by which that can happen is when nature or science produce “noise” that can be channeled into sounds. That can be done using architecture (Sea Organ), or reinterpreting a field of science (Quantum Computer Music). Sometimes, this combination of sound and science can be a deliberate choice, creating music.

DMS student Molly James and musician Hea Youn Chung (Sophy) combined their expertises and interests to explore this intersection between science and music. Molly plays trombone in her free time at a community orchestra. Sophy is a professional pianist and teacher at Yewon Arts School (Seoul, South Korea) who did her Master of Music degree in Piano Performance at The Juilliard School. What initially joined these two at the dead of the pandemic was a mutual language assistance: Molly wanted to learn Korean, and Sophy, back in South Korea, wanted to continue practicing English.

Molly and Sophy in Seoul - South Korea

And that’s how “Harmony of Nature” was born. A beautiful collaboration that converts natural phenomena into sounds through coding technology and expresses them in classical music. The project was funded by the Art & Tech program by Arts Council Korea. The data was collected using temperature loggers deployed in several sites across South Korea, along with freely available data from several spots. “I statistically analyzed this data and created multiple graphs using the open-source coding language Python. I shared them with Sophy and discussed the scientific interpretations. Together, we collaborated on what scientific aspects became what musical aspects.” said Molly, about the process of data collection and curation, prior to its translation into music.

“Like expressing human emotions through musical instruments, I have always wanted to express natural phenomena that we cannot see but can feel through sound. While envisioning this project, I focused on conveying natural phenomena through sound.” said Sophy. “For various expressions, I try to incorporate nuances such as shape and texture into the performance. In this project, the weight of the waves, the ebb and flow of the waves, the temperature changes, and the appearance of rain can be realized by various musical elements such as rhythm, dynamics, etc.”

Molly python plot
Air temperature measurement collected at the weather station in Incheon, South Korea. Period of observation was the first week of December 2021. The data observed in this figure was used to compose the song “One Week in Incheon”.

The composition “One Week in Incheon” directly came from hourly air temperature measurements collected at a weather station by the Korean Meteorological Administration Incheon branch 112. Other data, such as wave height, flow and ebb tides, were also analyzed in order to compose some pieces. “During this performance, I hope you can feel changes in temperatures, drops of rain, speed of the winds, and height of the waves”, says Molly. More songs can be found on Spotify or AppleMusic.

Science needs to reach out to the public, informing in different, inventive, artistic ways. Art is powerful. Collaborations between science and art will thrive as each part can use their unique skills to result in beautiful projects, such as this one.

DMS grad students do outreach in local elementary school

By Ewaldo Leitao.

Academic institutions have a tendency to stay in the “Ivory Tower” and be distant from their surrounding communities. Scientific communication and outreach is a great way to minimize the gap between institutions and their communities, and to educate the new generation, especially about environmental awareness. We in the Marine Sciences Department try our best to be aware of this and reach out to communities in order to explain what we do. During the Ocean Week (June 7-9), Prof. Hannes Baumann and Dr. Zosia Baumann, reached out to the Catherine Kolnaski Steam Magnet School, in Groton/CT to give science talks about various marine science topics.

Cover picture - WorldOceanDay
Prof. Hannes Baumann explaining 'who eats whom' in the ocean

Zosia introduced the Long Island Sound and its importance to 2nd grade students. Then the kids split up to visit various stations. The stations were led by graduate students Ewaldo Leitão, Lingjie Zhou, Max Zavell, Jenna O’del (URI), Molly James, and Dr. Susan Smith. Each one showcased their area of expertise, but catered to 2nd graders.

There were four different stations. Ewaldo and Susan explained plankton and their importance, despite their tiny size, connecting with the kids using the famous Plankton from SpongeBob Squarepants as an example and how it was created based on copepods. To grab kids' attention, organisms were displayed in many different ways, with pictures, a dissecting scope that had a sample with shrimp, baby starfish, a concentrated sample of copepods, and finally a copepod under the microscope so that kids could see how similar copepods are to the Plankton.

Lingjie introduced the concept of DNA, and made the kids build their own DNA strand by using gummy candies and straws. She explained the bases of the DNA using gummies with different colors to represent each, and how they match in the strand. As a motivation, the kids could take their own DNA strand candy home.

Max and Jenna were explaining fish physiology and behavior. They used cleared and stained specimens to show bones and cartilage of the fish. These can determine important fish behavior such as schooling, which is easily observable in the wild.

A baby sea star on the tip of a students finger

Graduate student Lingjie Zhou demonstrating to the kids how to build DNA strands from candy

Finally Molly explained the physics of the ocean. Using dyes to color water with different salinities, she demonstrated how salty water is denser and therefore stays in the bottom of the less dense, freshwater. These are not just important concepts for the ocean, it is why the kids can buoy easier in the ocean compared to lakes.

There’s an inherent joy and challenge in explaining scientific concepts to kids. We, scientists, are often told to have our elevator pitch in many levels of expertise, in order to explain what we do to our mom and to a potential employer. But explaining to kids is a completely different game. They can have a rather short attention span and yet get easily fascinated by new things. Therefore, explaining scientific concepts requires a combination of teaching them in an exciting way, that is also engaging but simplified so that they are able to retain the knowledge.

Having said that, it is a delight to end these interactions by asking the kids what they have learned, and listening to their excitement when they describe what they have just seen and experienced. Scientific outreach to our youngest generation is a great way to create environmental awareness and to build minds who will take better care of our planet.