Departmental Achievements, Spring 2021

There have been many achievements in our department in the past months! Here are highlights of recent awards, grants, and publications in the Department of Marine Sciences from October 2020 through April 2021.

Awards Description
Prof. Senjie Lin Elected as an AAAS (American Association for the Advancement of Science) Fellow and joined the 2020 ASLO (Association for the Sciences of Limnology and Oceanography) Fellows. These honors recognize his work in dinoflagellate biology and biological oceanography as a whole.
Prof. Ann Bucklin Received the 2020 UConn Faculty Excellence in Research and Creativity Award in the Sciences.
Allison Staniec (graduate student, Prof. Penny Vlahos) Chosen in the National Science Foundation’s (NSF) Dissertations in Chemical Oceanography (DISCO) Fellowship.
Hannah Collins (graduate student, Prof. Evan Ward) Awarded a grant from the Lerner-Gray Memorial Fund for Marine Research.
Tyler Griffin (graduate student, Prof. Evan Ward) Awarded the Melbourne R. Carriker Award from The National Shellfisheries Association.
Melissa Sanchez (undergraduate student) Awarded Sea Grant Summer 2021 Undergraduate Research Fellowship. She will examine the influence of selenium on the accumulation of methylmercury in phytoplankton with Prof. Robert Mason.

 

Grants Description
Prof. Samantha Siedlecki and Prof. Catherine Matassa NOAA OAP: Assessing vulnerability of the Atlantic Sea Scallop social- ecological system in the northeast waters of the US (2020-2023), $1,034,822. PIs Siedlecki, Meseck, Colburn, Matassa, Curchitser, Bethoney. This grant is for a collaboration between UConn, NOAA’s Northeast Fisheries Science Center (NEFSC), Commercial Fisheries Research Foundation (CFRF), and Rutgers University to study the impact of ocean acidification on Atlantic Sea Scallops in the US northeast and the development of management tools.
Prof. Samantha Siedlecki NOAA MAPP: The predictability of oxygen and its metabolic consequences for fisheries on decadal time scales (2020-2013), $439,315. PIs Siedlecki, Long, Petrik.

NOAA MAPP: Modeling Climate Impacts on Predictability of Fisheries and Other LMRs (2020-2023), $511,452. PIs Long, Siedlecki, Petrik.

NOAA MAPP: Towards the prediction of fisheries on seasonal to multi-annual time scales (2020-2023), $510,000. PIs Petrik, Long, Siedlecki.

NOAA MAPP: Building capacity for predictability of climate impacts on living marine resources in US coastal systems using the NOAA MOM6 ocean model. (2021-2024), $1,513,782. PIs Curchitser, Alexander, Resplendy, Siedlecki, Stock.

Prof. Heidi Dierssen NASA Ocean Biology and Biogeochemistry: Advancing Remote Sensing of Microplastics on the Surface Ocean (2021-2024), $401,914. PIs. Dierssen, Chowdhary, Ottaviani, Ibrahim, Knobelspiesse

NASA Ocean Biology and Biogeochemistry: Quantifying linkages between sea ice, phytoplankton community composition, and air-sea carbon fluxes west of Antarctic Penninsula through field, airborne and satellite (2020-2023), $1,095,330. PIs. Dierssen, Schofield, Stammerjohn, Munro.

Prof. Penny Vlahos EPA/NYSG/CTSG: Alkalinity in Long Island Sound Embayments (ALISE) (03/01/2021-02/28/2023), $131,088. We are investigating the range of alkalinity and carbonate saturation in several LIS embayments to identify areas where conditions may be of concern for aquatic species.

NIH-RO1: Chronic Kidney Disease of Unknown Etiology: Applying a Multidisciplinary Approach to Investigate the World’s Most Common Tubulointerstitial Kidney Disease (09/01/2021-08/31/2026), $528,717. This project is a continuation of our original R21 grant to conduct water quality testing in endemic and non-endemic regions to identify possible causative elements.

NSF: Carbonate system dynamics and biogeochemistry in a changing Arctic (05/01/2021- 04/30/2023), $272,619. We will be performing a suite of biogeochemical measurements in the marginal ice zone to understand the unique chemistry of this receding region.

Prof. Evan Ward and Prof. Sandra Shumway Establishing robust bioindicators of microplastics in Long Island Sound: Implications for reliable estimates of concentration, distribution, and impacts. Awarded by the Long Island Sound Study Research Grant Program, a cooperative program of the EPA Long Island Sound Office, Connecticut Sea Grant (CTSG), and New York Sea Grant (NYSG).

 

Publications Description
Prof. Peter Auster Prof. Auster presents a publication describing a rarely observed feeding frenzy of deep-sea sharks feeding on an Atlantic swordfish recently settled to the seafloor, including predation on a small shark by a wreckfish. (Auster, P.J., K. Cantwell, R.D. Grubbs, S. Hoy. (2020).  Observations of deep-sea sharks and associated species at a large food fall on the continental margin off South Carolina, USA (NW Atlantic).  J. Ocean Sci. Found., 35 (2020), pp. 48-53.)

Prof. Auster and Marine Science Major Lissa Giacalone pioneered a new approach for using 360-degree camera technology for analyzing the interactions of single and mixed species groups of predators and their prey in Gray’s Reef National Marine Sanctuary. (Auster, P.J. and Giacalone, L. (2021). Virtual Reality Camera Technology Facilitates Sampling of Interactions Between Reef Piscivores and Prey. Marine Technology Society Journal 55(2):54-63)

Prof. Zofia Baumann Prof. Baumann and colleagues present research explaining how the kidneys and liver of water birds detoxify methylmercury. (Poulin, B. A., Janssen, S. E., Rosera, T. J., Krabbenhoft, D. P., Eagles-Smith, C. A., Ackerman, J. T., … & Manceau, A. (2021). Isotope Fractionation from In Vivo Methylmercury Detoxification in Waterbirds. ACS Earth and Space Chemistry.)
Prof. Penny Vlahos Prof. Vlahos contributed to the United Nations Second World Ocean Assessment (WOA II), the newest outcome of the only integrated assessment of the world’s ocean at the global level covering all three pillars of sustainable development. (https://www.un.org/regularprocess/)
Prof. Michael Whitney and Prof. Penny Vlahos Profs. Vlahos and Whitney show that mitigation efforts have reduced hypoxia in Long Island Sound, but also that warming waters are working against these trends. (Whitney, M. M., & Vlahos, P. (2021). Reducing Hypoxia in an Urban Estuary Despite Climate Warming. Environmental Science & Technology, 55(2), 941-951.)
Prof. Sandra Shumway Prof. Shumway was part of an international team of researchers reviewing the developments in global aquaculture over the past two decades highlighting its integration in the global food system. (Naylor, R. L., Hardy, R. W., Buschmann, A. H., Bush, S. R., Cao, L., Klinger, D. H., … & Troell, M. (2021). A 20-year retrospective review of global aquaculture. Nature, 591(7851), 551-563.)
Prof. Heidi Dierssen NASA has a proposed mission called the Surface Biology and Geology (SBG) mission as recommended by the 2018 Decadal Survey. Dierssen recently participated in a large collaborative effort to review existing hyperspectral and thermal algorithms relevant to the SBG mission across the following categories: snow/ice, aquatic environments, geology, and terrestrial vegetation, and summarize the community-state-of-practice in each category. (Cawse-Nicholson, K. et al.  (2021). NASA’s surface biology and geology designated observable: A perspective on surface imaging algorithms. Remote Sensing of the Environment. 257: 112349.)

Red and green algae growing on snow in the Antarctic Peninsula causes significant extra snowmelt that is on par with melt from dust on snow in the Rocky Mountains, according to a first-of-its-kind scientific research study that Dierssen worked on. (Khan, A. L., H. Dierssen, T. Scambos, J. Höfer, and R. R. Cordero. (2021). Spectral Characterization, Radiative Forcing, and Pigment Content of Coastal Antarctic Snow Algae: Approaches to Spectrally Discriminate Red and Green Communities and Their Impact on Snowmelt. The Cryosphere. 15, 133-148.)

Prof. Julie Granger From seasonal surveys, we show that nutrients inshore are persistently higher than in source waters offshore in the Southern Benguela Upwelling System (eastern Arctic Ocean), due to benthic-pelagic coupling of production and regeneration on the broad and shallow shelf. The incidence of “nutrient trapping” inshore explains the high productivity of system and explains hypoxic events. (Flynn, R. F., Granger, J., Veitch, J. A., Siedlecki, S., Burger, J. M., Pillay, K., & Fawcett, S. E. (2020). On‐shelf nutrient trapping enhances the fertility of the southern Benguela upwelling system. Journal of Geophysical Research: Oceans, 125(6).)
Prof. Robert Mason Prof. Mason and past graduate student Emily Seelen investigated differences in mercury cycling in contaminated versus uncontaminated estuaries in the US northeast. (Seelen, E. A., Chen, C. Y., Balcom, P. H., Buckman, K. L., Taylor, V. F., & Mason, R. P. (2021). Historic contamination alters mercury sources and cycling in temperate estuaries relative to uncontaminated sites. Water Research.)

Prof. Mason and colleagues examined how factors such as mercury concentration in water and sediment, and the watershed land use, influenced the concentrations of mercury in mummichogs and silversides in estuaries from the Chesapeake Bay to northern Maine. (Buckman, K.B., Mason, R.P., Seelen, E.A., Buckman, K.B., Taylor, V.F., Balcom, P.H., Chipman, J., Chen, C.Y. (2020). Patterns in forage fish mercury concentrations across Northeast US estuaries. Environ. Res. 194, Art. # 110629.)

Prof. Ann Bucklin This review is a collaborative effort of the Scientific Committee for Ocean Research (SCOR) Working Group WG157: MetaZooGene.  The MetaZooGene Barcode Atlas and Database (MZGdb) includes >150,000 mitochondrial cytochrome oxidase I (COI) sequences for ~5,600 described species of marine zooplankton. The MZGdb is a reference database for identification of species from DNA barcoding and metabarcoding of pelagic biodiversity, with advanced search functions by ocean region and taxonomic group. (Bucklin et al. (2021) Toward a global reference database of COI barcodes for marine zooplankton.  Marine Biology.)
Gihong Park (postdoc, Prof. Hans Dam) Prof. Dam and Park present a novel framework to incorporate the cost of defense in toxin-producing prey/predator relationship models. This paper was selected in Faculty Opinions as one of special significance in its field, considered as highly important emerging research. (Park, G., & Dam, H. G. (2021). Cell-growth gene expression reveals a direct fitness cost of grazer-induced toxin production in red tide dinoflagellate prey. Proceedings of the Royal Society B, 288(1944).)
Kelly McGarry (graduate student, Prof. Samantha Siedlecki) McGarry and colleagues developed equations to estimate highly variable carbonate system properties in northeast US shelf waters from other variables – temperature, salinity, oxygen, and nitrate – that are affected by the same processes that drive carbonate system variability but are measured more frequently with better spatial coverage. (McGarry, K., Siedlecki, S. A., Salisbury, J., & Alin, S. R. (2021). Multiple linear regression models for reconstructing and exploring processes controlling the carbonate system of the northeast US from basic hydrographic data. Journal of Geophysical Research: Oceans, 126(2).)
Veronica Rollinson (research assistant, Prof. Julie Granger) Rollinson and colleagues measured nutrients and the naturally occurring nitrogen (N) and oxygen (O) stable isotope ratios of nitrate discharged from the Pawcatuck River over an annual cycle and uncovered a seasonality to loading and sources of N from the watershed. Seasonality in the nitrate isotope ratios also informed on N cycling. (Veronica R. Rollinson, Julie Granger, Sydney C. Clark, Mackenzie L. Blanusa, Claudia P. Koerting, Jamie M. P. Vaudrey, Lija A. Treibergs, Holly C. Westbrook, Catherine M. Matassa, Meredith K. Hastings, and Craig R. Tobias (2021). Seasonality of nitrogen sources, cycling and loading in a New England river discerned from nitrate isotope ratios. Biogeosciences discussion.)