A delayed spring bloom along the West Antarctica Peninsula 

By Samantha Rush.

If you think about the holiday season, it is easy to grasp the trend that Christmas festivities that used to begin traditionally after Thanksgiving in the US appear much earlier. In recent years, the timeline has shifted and many Christmas and holiday themed advertisements, decorations, and events appear even sooner than before. Of course, this notable shift has traceable causes and is known (consciously or subconsciously) to be driven by retail strategies, commercialization, consumer behavior, social media influences, and cultural shifts.  

The changes in the timelines of global phenomena also extend to marine environments. In fact, the polar regions are some of the most rapidly changing locations on the planet due to human induced climate change. In the West Antarctic Peninsula (Figure 1), a combination of warming and sea ice loss have altered the timing of recurring seasonal events, the study of which is known as phenology. While most predictions have suggested that these changes in the environment would cause an earlier spring bloom, or ocean biology to kick start, lead author and postdoctoral researcher Jessie Turner found exactly the opposite in a recent study of the ice-associated waters west of the Antarctic Peninsula.  

turner fig1
Figure 1: Study area

Using satellite ocean color data from 1997 to 2022, researchers from the University of Connecticut and five other collaborating institutions and laboratories discovered that spring blooms were shifting later in ice zones and on continental shelf regions west of the Antarctic Peninsula (Figure 2). By using satellite derived chlorophyll-a concentrations as a proxy for phytoplankton biomass, researchers were able to track the concentration and timing of the elevated concentration corresponding to the date when heightened biological activity begins.  

turner-fig2

After investigating a handful of environmental variables to better ascertain the potential mechanisms for the seasonal shift, the authors found that wind speed was the most likely mechanism for the observed change in the spring bloom start date. Other variables such as light and temperature did not explain the trends. However, there was a long-term increase in wind mixing, which likely decreases the stability of the water column in the early spring season and suppresses phytoplankton accumulation until later in the season (Figure 3).  

While phytoplankton are small single cell plants, the timing of the phytoplankton spring bloom affects the entire marine food web. Higher trophic level organisms may experience feeding, migration, and breeding impacts. In fact, phenology changes at the base of the Antarctic food web are likely to disrupt the life history of key species such as Adélie penguins. Other, widespread impacts also include potential changes to the timing and magnitude of carbon dioxide absorption by the ocean in these locations.

Jessie Turner
Dr. Jessie Turner

turner fig3
Figure 3

Next, the researchers plan to investigate specific phytoplankton species and employ the use of new generation hyperspectral satellite missions to further study long-term trends in polar regions. Rapidly developing technology combined with field measurements will allow for better examinations of the changes rapidly occurring in this polar region in studies to come. 


Jessica S. Turner, J.S., Dierssen, H., Kim, H.H., Stammerjohn, S., Munro, D.R., and Kavanaugh, M. (2024). Changing phytoplankton phenology in the marginal ice zone west of the Antarctic peninsula. Marine Ecology Progress Series 734: 1–21