Awards
Prof. Robert Mason
Received the International Conference on Mercury as a Global Pollutant (ICMGP)’s Kathryn Mahaffey Lifetime Achievement Award. This award celebrates and recognizes selected individuals who have made extraordinary lifetime achievements in mercury research, mentoring, and/or contributions to governmental policy and public outreach. Dr. Mason will formally receive this honor in July at the ICMGP conference, but he can be seen here with the physical award. Read more about this honor here.
Prof. Penny Vlahos
Elected to the Connecticut Academy of Science and Engineering.
Received a Fulbright Specialist award to work on global pollutants at ETH in Zurich (May 1 to June 11 2022).
Devan Barnum (Undergraduate student, Prof. Baumann)
Received NOAA’s Ernest F. Hollings Undergraduate Scholarship. This scholarship provides academic assistance as well as a 10-week full-time paid internship at a NOAA facility during the summer.
Grants
Prof. Zofia Baumann
Long Island Sound Futures Fund: Shell Recycling Planning to Restore Long Island Sound Oyster Reefs and Shorelines. ($156k, 2022-2024). PI Baumann was awarded money to collaborate with local restaurants, the Bureau of Aquaculture, the Connecticut Sea Grant, and the Town of Groton to establish the Groton-Mystic Shell Recycling Program, which will divert oyster and clam shells from a regular waste stream, and shells will be saved for shellfish restoration projects in the future.
Profs. Julie Granger and Senjie Lin
NSF Polar Programs: EAGER: Exploring links between iron and phosphorus nutrition of Antarctic marine phytoplankton. This grant tests whether polar phytoplankton synthesize and utilize phytic acid – a molecule involved in the vacuolar storage of phosphate and iron in higher plants – potentially explaining the higher P:C ratios of phytoplankton in iron limited regions of the oceans – particularly the Southern Ocean.
Prof. Robert Mason
NSF Chemical Oceanography: The effects of terrestrial organic matter inputs on coastal mercury cycling: Methylmercury production and bioaccumulation. (2022-2025). PIs Mason, Taylor, and Chen. This funding supports 4 cruises in the Gulf of Maine and laboratory studies using mesocosms.
NSF Chemical Oceanography: US GEOTRACES GP-17-OCE and -ANT Sections. External sources, cycling and processes affecting mercury speciation in the South Pacific and Southern Oceans. (2022-2025). PIs Mason, Lamborg, Hammerschmidt, and Janssen. This funding supports one cruise from Tahiti to the Southern Ocean, then Chile, and another from Chile to Antarctica and back.
Prof. Penny Vlahos
Profs. Vlahos and Abadia were awarded a seed grant to study environmental water quality impact on cognitive development in children in target communities along the Magdalena River in Columbia.
Publications
Prof. Hannes Baumann
Baumann and colleagues publish new experimental evidence for the unusual CO2-sensitivity of sand lance embryos. (Baumann, H., Jones, L.F., Murray, C.S., Siedlecki, S.A., Alexander, M., Cross, E.L. (2022) Impaired hatching exacerbates the high CO2 sensitivity of embryonic sand lance, Ammodytes dubius. Marine Ecology Progress Series 687:147-162.)
Baumann contributed a textbook chapter on Fish Ecology, based on his long-running undergraduate/graduate course at UConn. (Baumann, H. (2022) Chapter 11: Fish Ecology. In: Pan, J. and Pratolongo, P.D. (eds) Marine Biology: a functional approach to the oceans and their organisms. CRC Press/Science Publishers (Taylor & Francis) published March 3rd 2022.)
DMS graduate student Callie Concannon published her Masters thesis on long-term fecundity effects of high CO2 conditions in silversides (Concannon, C.A.*, Cross, E.L., Jones, L.F.*, Murray, C.S., Matassa, C. McBride, R.S., and Baumann, H. (2021) Temperature-dependent effects on fecundity in a serial broadcast spawning fish after whole-life high-CO2 exposure. ICES Journal of Marine Science 78:3724–3734)
Profs. Ann Bucklin and Paola Batta-Lona
Profs. Bucklin and Batta-Lona, and colleagues present a study on COI metabarcoding of marine zooplankton, rapid-responders and useful indicators of climate change impacts. Species diversity of zooplankton is essential for time-series monitoring of marine ecosystems. This study used samples from the Ecosystem Monitoring (EcoMon) Surveys by the NOAA NMFS Northeast Fisheries Science Center. Comparative analysis of molecular (COI metabarcoding) and morphological (microscopic) data showed significant correlation for 5 of 6 taxonomic groups and for 5 of 7 species with >1,000 COI sequences for which both types of data were available. The results demonstrate the power and potential of COI metabarcoding for identification of species of metazoan zooplankton in the context of ecosystem monitoring. (Bucklin, A., Batta-Lona, P.G., Questel, J.M., Wiebe, P.H., Richardson, D.E., Copley, N.J., O’Brien, T.D. (2022) COI Metabarcoding of Zooplankton Species Diversity for Time-Series Monitoring of the NW Atlantic Continental Shelf. Front. Mar. Sci. 9:867893)
Prof. Hans Dam
In collaboration with University of Vermont researchers Brennan and Pespeni, Dam, Baumann and former DMS student James deMayo demonstrate a plasticity cost in the ability of copepods to express genes in response to ocean warming and acidification. This is further evidence that population adaptation to climate change is no free lunch. (Brennan, R. S., deMayo, J.A., Dam, H.G., Finiguerra, M.B., Baumann, H., Pespeni, M.H. (2022) Loss of transcriptional plasticity but sustained adaptive capacity after adaptation to global change conditions in a marine copepod. Nature Commun. 13: 1147)
Prof. Senjie Lin
Lin led a team of international researchers, including UConn alumni and visiting scholars, to carry out this molecular ecological study. Results showed that metazoans, dinoflagellates, and proteobacteria dominated the sinking carbon particles, contrary to the common notion that diatoms, haptophytes or cyanobacteria are the dominant carbon exporters. RNA data also showed that bacteria were active to degrade various compounds, contributing to particle decay. (Lin, S., Li, T., Yuan, H., Li, H., Yu, Y., Zhuang, Y., Li, L., Huang, B. and Liu, G. (2022) Sediment trap study reveals dominant contribution of metazoans and dinoflagellates to carbon export and dynamic impacts of microbes in a subtropical marginal sea. J. Geophys. Res. Biogeosci. 127: e2021JG006695)
Prof. David Lund
Lund and former UConn graduate student Matt Lacerra co-author a new study that uses proxy and model results to explain how atmospheric CO2 levels changed during the last deglaciation. (Yu, J., Oppo, D.W., Jin, Z., Lacerra, M., Ji, X., Umling, N.E., Lund, D.C., McCave, N., Menviel, L., Shao, J. and Xu, C. (2022) Millennial and centennial CO2 release from the Southern Ocean during the last deglaciation. Nature Geoscience 15:293-299)
Prof. Cara Manning
Prof. Manning and colleagues characterize interannual variability in the distributions of the potent greenhouse gases methane and nitrous oxide in the rapidly-changing Arctic Ocean using measurements from 13 research cruises between 2015 to 2019. (Manning, C.C.M., Zheng, Z., Fenwick, L., McCulloch, R.D., Damm, E., Izett, R.W., et al. (2022) Interannual variability in methane and nitrous oxide concentrations and sea-air fluxes across the North American Arctic Ocean (2015–2019). Global Biogeochemical Cycles, 36, e2021GB007185.)
Prof. Robert Mason
Prof. Mason and colleagues present a review of Mercury cycling in the Arctic, a synthesis of the information compiled for the Arctic Monitoring and Assessment Program (AMAP) mercury report that was published in 2021. (Dastoor, A., Angot, H., Bieser, J., Christensen, J.H., Douglas, T.A., Heimbürger-Boavida, L-E., Jiskra, M., Mason, R.P., McLagan, D.S., Obrist, D., Outridge, P.M., Petrova, M.V., Ryjkov, A., St. Pierre, K.A., Schartup, A.T., Soerensen, A.L., Toyota, K., Travnikov, O., Wilson, S.J., Zdanowicz, C. (2022) Arctic Mercury Cycling. Nature Reviews – Earth and Environment.)
Prof. Mason and colleagues from the Zhao chemistry lab at UConn Storrs present the results of laboratory studies examining how cadmium selenide nanoparticles, produced for a variety of industrial applications, could impact mercury and methylmercury cycling in the environment. (Shi, X., Zhao, J., Wang, Y., Mason, R.P. (2021) The transformation of inorganic and methylmercury in the presence of L-cysteine capped CdSe nanoparticles. Frontiers in Environmental Chemistry Art. # 762052.)
Prof. Mason and colleagues present work from a past cruise, showing data of mercury in all its forms in the central Arctic Ocean: water, ice cores, snow, brine, and ice ponds. (Jonsson, S., Michelle G. Nerentorp Mastromonaco, Gardfeldt, Mason, R.P. (2022) Distribution of total mercury and methylated mercury species in central Arctic Ocean Water and Ice. Marine Chemistry, 242, Art. # 104105.)
Prof. Mason and colleagues present the final product of a study done in Canada in the Experimental Lakes Area where stable isotope additions of Hg were made to a small lake and its watershed simulating atmospheric deposition to track the rate and pathways of Hg into fish. After the additions stopped, the recovery of the lake and the decrease in concentrations of Hg in biota were tracked, as detailed in the paper. Overall, the recovery was rapid, indicating that decreasing anthropogenic Hg emissions will have an immediate impact. (Blanchfield, P.J., Rudd, J.W.M., Hrenchuk, L.E., Amyot, M., Babiarz, C.L., Beaty, K.G., Bodaly, R.A., Branfireun, B.A., Gilmour, C.C., Graydon, J.A., Hall, B.D., Harris, R.C., Heyes, A., Hintelmann, H., Hurley, J.P., Kelly, K.A., Krabbenhoft, D.P., Lindberg, S.E., Mason, R.P., Paterson, M.J., Podemski, C.L., Sandilands, K.A., Southworth, G.R., St. Louis, V.L., Tate, L.S., Tate, M.T. (2022) Experimental evidence for the recovery of mercury-contaminated fish. Nature, 601, 74-78.)
Prof. Leonel Romero
This study shows that a recently developed wave-breaking model significantly improves our ability to predict the short wind-wave spectrum, which has important implications for improving the prediction of microseismic noise in the ocean. (Romero, L., Lubana, K. (2022) On the Bimodality of the Wind-Wave Spectrum: Mean-Squared-Slopes and Azimuthal Overlap Integral. Journal of Physical Oceanography.)
Profs. Samantha Siedlecki and Evan Ward
Profs. Siedlecki and Ward and graduate student Halle Berger present work on statistical modeling of marine biology. This paper highlights the importance of incorporating physiological mechanisms into statistical species distribution models and illustrates that even species that have a high tolerance for low oxygen, such as Sablefish, may undergo distribution shifts in the face of growing oxygen depletion in coastal ecosystems. (Essington, T.E., Anderson, S., Barnett, L., Berger, H., Siedlecki, S., Ward, E. (in production) Advancing statistical models to reveal the effect of dissolved oxygen on the spatial distribution of marine taxa using thresholds and a physiologically based index. Ecography.)
Halle Berger (Graduate student, Profs. Matassa and Siedlecki)
This paper describes a framework for conducting interdisciplinary research using a hybrid model (in person + remote components) to make collaboration more efficient, equitable, and inclusive. (Rudzin, J.E., Soule, D.C., Whitaker, J., Berger, H., Clayton, S., Fogaren, K.E. (2022) Catalyzing Remote Collaboration During the COVID-19 Pandemic and Beyond: Early Career Oceanographers Adopt Hybrid Open Science Framework. Frontiers in Marine Science, 9:855192.)
Emma Shipley (Graduate student, Prof. Penny Vlahos)
Shipley and colleagues presented a study of agrochemical risk assessment and water quality in well and river waters in Wilgamuwa, Sri Lanka. This study helps identify primary areas of water quality concern for rural farmers in this region. (Shipley, E.R., Vlahos, P., Chandrajith, R., Wijerathna, P. (2022) Agrochemical exposure in Sri Lankan Inland Water systems. Environmental Advances, 7, 100150.)
Mengyang Zhou (Graduate student, Prof. Julie Granger)
Zhou and colleagues present a study showing volume effects on the denitrifier method for nitrate N and O isotope ratio analyses, and what we should do to achieve improved measurement accuracy and foster inter-comparability. (Zhou, M., Granger, J., Chang, B X. (2022) Influence of sample volume on nitrate N and O isotope ratio analyses with the denitrifier method. Rapid Communications in Mass Spectrometry, 36(4), e9224.)
Graduations
Christina Menniti (M.S. 2021)
Major advisor: Michael Whitney
Thesis: Assessing the Importance of Variability in Oxygen Concentrations and Horizontal Fluxes in Western Long Island Sound
Maryam Mirhakak (M.S. 2021)
Major advisor: Heidi Dierssen
John Speers (M.S. 2021)
Major advisor: James O’Donnell
Thesis: The effect of sea level rise on flooding statistics
Melissa Wojcicki (M.S. 2021)
Major advisor: Ann Bucklin
Thesis: Understanding Deep-Sea Trophic Interactions by Metabarcoding Mesopelagic Fish Diets
Raymond Graham (M.S. 2021)
Major advisor: James Edson
Thesis: Investigation of the moisture budget within the Tropics, under the ITCZ
James deMayo (Ph.D. 2021)
Major advisor: Hans Dam
Dissertation: Costs and Consequences of Adaptation to Combined Warming and Acidification for Two Estuarine Copepods
Lucas Jones (M.S. 2021)
Major advisor: Hannes Baumann
Thesis: Using Low-Coverage, Whole Genome Sequencing to Study Northern Sand Lance (Ammodytes dubius) Population Connectivity in the Northwest Atlantic
Josiah Grzywacz (M.S. 2021)
Major advisor: George McManus
Thesis: Quantum Efficiency (Fv/Fm) and Performance of Retained Plastids in an Oligotrich Mixotroph and Its Prey
Hannah Collins (M.S. 2022)
Major advisor: Evan Ward
Thesis: Examining the effects of nylon microfibers on the gut microbiome and gut tissues of the blue mussel, Mytilus edulis
Kelly McGarry (M.S. 2022)
Major advisor: Samantha Siedlecki
Kelli Mosca (M.S. 2022)
Major advisor: Hannes Baumann
Thesis: Atlantic sturgeon (Acipenser oxyrinchus) Growth and Habitat Use in the Connecticut River and Long Island Sound
Peter Ruffino (M.S. 2022)
Major advisor: Craig Tobias
Thesis: Tracing the fate of phytoplankton-derived nitrogen: effects of oysters on recycling, denitrification, and burial
Samantha Linhardt (M.S. 2022)
Major advisor: Catherine Matassa
Thesis: Consumer pressure interacts with recruitment to shape the effects of an intertidal foundation species (Semibalanus balanoides) at local and regional scales