One of the most difficult challenges facing scientists is predicting how organisms will respond to rapid global change. A collaboration between oceanographers at the University of Connecticut and evolutionary biologists at the University of Vermont is looking into how copepods (tiny crustaceans that rival insects as the most abundant animals on the planet) adapt to ocean warming and acidification. This requires understanding the underlying genomic mechanisms that allow these animals to adapt, and the constraints to adaptation. This study by Reid Brennan and collaborators is a lucid example of this approach, identifying sets of genes that are linked to copepod adaptation to stressful new environments, and showing that the ability of these animals to respond to changing conditions is challenged after prolonged adaptation. Therefore, there are limits to adaptation that can constrain the resilience of animal populations to environmental stress.
3rd March 2022. DMS faculty Hannes Baumann contributed a chapter to the new textbook Marine Biology: a functional approach to the oceans & their organisms (Taylor & Francis), which has just been published. The chapter is based on Baumann's long-running class "Ecology of Fishes" (MARN4018/5018), touching on a large variety topics including fish evolution, zoogeography, metabolism, growth, reproduction & basic concepts of fisheries science. The book is geared towards advanced undergraduate and graduate students, stimulating interest while encouraging readers to seek out further in-depth sources.
"With about 28,000 known species, fishes make up more than half of all known vertebrates (Helfman et al. 2009). Over the course of their long evolutionary history they radiated in every conceivable aquatic habitat, from the open ocean and deep-sea trenches to shelf seas, estuaries and lakes, to rivers and the smallest streams and ponds. They are found in subzero Antarctic waters, altitudes of over 4,000 m and even acidic desert springs of > 40°C (Moyle and Cech 2004). The fascinating adaptations to these habitats have produced a mind-bending diversity of form and function, a difference in size that spans more than three magnitudes (0.01 – 18 m), and a profusion of reproductive strategies. Apart from their diversity and unique evolutionary history, fishes are of intense scientific interest for economic reasons, because they comprise the nutritional foundation for a large part of humanity (Costanza et al. 1997) and their exploitation over time has led to thriving – and warring – civilizations. Today, the impetus of sustainable fish management at a time of rapid ecological re-organization due to man-made climate change has made the study of fish ecology and fish stock productivity as urgent and important as ever."