

UNIVERSITY OF CONNECTICUT

Department of Marine Sciences Presents a Seminar by

Ale Cifuentes-Lorenzen UConn CIRCA

Exploring the role of wave-driven turbulence at the air-sea interface through measurements of TKE dissipation rates

Alejandro Cifuentes-Lorenzen¹, C. J. Zappa², J. B Edson³, J. O'Donnell¹ and D. Ullman⁴

¹University of Connecticut, ²LDEO Columbia University, ³Woods Hole Oceanographic Institute and ⁴University of Rhode Island

This work serves as an observation-based exploration into the role of wave-driven turbulence at the air-sea interface by resolving Turbulent Kinetic Energy (TKE) dissipation rates above and below the surface. A series of subsurface ocean measurements confirm a TKE dissipation rate enhancement relative to the law-of-the-wall (ε_{obs} > ε_{wall}) down to approximately 6 m. Simultaneous measurements of TKE dissipation rates on the atmospheric side capture a deficit relative to the law-of-the-wall (ε_{obs} < ε_{wall}). This deficit was explained in terms of wave-induced perturbations and integrated to provide a novel estimate of the amount of energy going into the wave field. These estimates correlate well with a classic spectral input parameterization. Observations suggest that approximately 3-10% of the available kinetic energy on the atmospheric side is going into dissipation under different wind forcing conditions. From a spectral perspective the input-dissipation balance holds for wind speeds in the 8-12 ms⁻¹ range with wave ages (U_{10}/c_p) denoting developed seas (0.87 – 1.05). Above 12 ms⁻¹ winds, waves are actively growing and only a fraction of the spectral input goes into dissipation, here under young seas (U_{10}/c_p) 1.1) the spectral input-dissipation balance does not hold.

Host: Jim O'Donnell

Time & Date: 11:00 am, Friday, January 20, 2023

Place: Lowell Weicker Building, Seminar Room 103 (or WebEx)

Please visit this page to request seminar information: https://marinesciences.uconn.edu/seminar/seminarform/

If you are an individual with a disability and need accommodations, please contact 860-405-9152 or email marinesciencesseminars@uconn.edu.

For cancellations and additional seminar information see: https://marinesciences.uconn.edu/seminar/seminar1233/.