UCONN COLLEGE OF LIBERAL

DEPARTMENT OF MARINE SCIENCES

Coastal sediments accumulate organic debris from the

time oxygen consumption. Additionally, microbes in the

marine environment, which is then decomposed by bacteria

in the sediments. Bacterial decomposition consumes oxygen

and nitrate found in the water above (Hanne et al., 1992). By

measuring oxygen consumption in Weguetequock Cove, we

sediments convert nitrate (NO₃⁻), a plant nutrient, into inert

et al. 1985). This conversion, also known as denitrification.

usable nitrate available for plant growth (Davis et al. 2004).

nitrogen gas (N₂) as part of its respiration process (Cameron

improves the health of the system by reducing the amount of

can determine the impact of the bacterial community on night

Where Does the Oxygen Go? Sediment Analysis in Wequetequock Cove

Liz Arsenault, Kirby Greene, Sarah Pike

Results

• The concentration of dissolved oxygen in the overlying water decreased at continually for 2015 and 2016 incubations (figure 1).

• Oxygen decreased by 0.093 ppm/L/hour in 2016 and 0.048 ppm/L/hour in 2015 (figure 1,table 1).

• Nitrate uptake for 2015 data equaled 2.2 x 10⁻³ ppm/L/hour (figure 2, table 1).

• Nitrate uptake corresponded to 40% of the total nitrate removed from the system.

 Oxygen uptake by sediment corresponded to ~1.63 ppm/ hour, accounting for only 5% of the oxygen consumption.

 Sediment denitrification could consume upwards of 0.5 ppm of nitrate over 24 hours. The average total dissolved nitrogen (TDN) concentration in the water in summer mornings is ~0.125 ppm. Thus, denitrification could remove up to ~40% of ambient TDN concentrations daily.

a. To measure oxygen consumption of sediment in

Wequetequock Cove in order to gauge the oxygen demand of the bacteria.

b. To measure the sediment denitrification rate to gauge how much nitrate is taken out of the system by the bacteria.

Methods

Background

1. Six sediment cores were collected in October 2015 and again in 2016.

2. Cores were incubated in oxygen tight chambers in a water bath at a constant 20°C with gentle agitation of the overlying water. In 2015, nitrogen (40 μ M) was added to the overlying water in order to estimate the nitrate demand.

3. Cores were sacrificed at incremental time points over a 24 hour period in both years, oxygen was measured, and water samples were collected for nitrate analysis.

4. Nitrate analysis was performed on SmartChem instrument.

Figure 1. Rates of oxygen consumption for the years 2015 and 2016, given in parts per million over time in

Figure 2. Nitrate concentrations in 2015 released by sediment cores given in parts per million over time in hours.

Year	Substance	Rate (ppm/L/hour)
2016	Oxygen (O2)	0.048
	Oxygen (O2)	0.093
2015	Nitrate (NO3)	2.2e^-3

Table 1. Rates of oxygen and nitrate consumption for 2016 and 2015 given in ppm/L/hour.

Photo of cores and core sampling devices

Discussion

The total oxygen uptake by sediments in Wequetequock Cove amounts to only ~5% of overall night-time biological oxygen consumption, thus is not a sizeable oxygen sink.

Oxygen consumption by Wequetequock Cove sediment is similar to rates typically observed in coastal New England (Thurman et al. 1990).

Nitrate uptake by sediments results in sizeable removal of nitrate from the water, accounting for ~40% of ambient nutrient nitrogen (as TDN). However, these nitrate removal processes do not impact overall oxygen consumption.

In conclusion, sediment oxygen uptake and denitrification processes do not have a significant impact on the night time oxygen budget in Wequetequock Cove.

References

Rasmussen, H., & Jørgensen, B. B. (1992).
Microelectrode studies of seasonal oxygen uptake in a coastal sediment: Role of molecular diffusion. Marine ecology progress series. Oldendort, 81(3), 289-303.
Davis, Richard A., Jr, and Duncan M. Fitzgerald. Beaches and Coasts. Massachusetts, Blackwell, 2004.
Cameron, Eugene N. "Pegmatite Investigations 1945-1980 New England." Geological Survey Professional Paper 455, vol. 455, 1985, pp. 1-335.
Cameron, Eugene N. "Begmatite Investigations 1942-45 New England." Geological Survey Professional Paper 455, vol. 250, 1949, pp. 1-400.
Thurman, Harold V. "Introduction to oceanology and Marine Chemistry." Mount San Antonio College., Vol. 5. 1990. Pp. 145-293.